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Abstract—This project explores surface modeling techniques
applied to 3D point cloud data of buildings and terrain, focusing
specifically on Linear Regression (LR) and Gaussian Process
Regression (GPR). For modeling wall surfaces, LR was utilized
with automatic dimensionality selection based on the lowest mean
squared error (MSE). In contrast, GPR was employed to estimate
complex terrain surfaces, providing both accurate predictions
and quantified uncertainty estimations. Furthermore, we sys-
tematically evaluated both models and addressed the challenges
associated with manual hyperparameter tuning by implementing
Maximum Likelihood Estimation (MLE), significantly improving
the predictive performance of GPR. Our results demonstrate the
effectiveness of automated parameter optimization and rigorous
model evaluation, highlighting their potential in robotic naviga-
tion, environmental modeling, and adaptive learning scenarios.

I. INTRODUCTION

Accurate surface modeling from 3D point cloud data plays
a critical role in robotic perception, supporting essential tasks
such as autonomous navigation, manipulation, environmental
understanding, and obstacle avoidance [1], [2]. Among various
techniques, regression methods have gained popularity for sur-
face reconstruction due to their efficiency and interpretability.
Linear regression, in particular, stands out for its simplicity
and computational speed, making it well-suited for initial
approximations or modeling planar structures [3]. However,
the performance of linear models often decreases significantly
in real-world scenarios, which usually involve complex non-
linearities, noise, and uncertainties.

Gaussian Process Regression (GPR) effectively addresses
these challenges by providing a flexible, probabilistic frame-
work capable of modeling complex nonlinear relationships
while simultaneously quantifying uncertainties [4], [5], [6].
The ability to estimate uncertainties is particularly valuable in
robotics, as it allows robots to make safer and more informed
decisions under uncertain conditions [2]. Nevertheless, the
effectiveness of GPR is highly dependent on appropriate
kernel hyperparameters, which traditionally require significant
manual tuning, making the modeling process inefficient and
less practical.

In this assignment, we systematically explore both linear
and Gaussian process regression methods by applying them

to surface modeling of walls and terrains extracted from
real-world point cloud datasets. To objectively evaluate these
methods, we employ metrics such as Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and uncertainty
analysis [7]. Additionally, we implement an automated hyper-
parameter optimization approach using Maximum Likelihood
Estimation (MLE) [8], [9], thereby significantly reducing
manual tuning efforts and improving model performance.

The main contributions of this assignment are as follows:
• Implementation and systematic evaluation of linear re-

gression and Gaussian Process Regression for robotic
surface modeling tasks.

• Development of an automatic hyperparameter optimiza-
tion method for Gaussian Process models to avoid manual
tuning.

• A comprehensive strategy for analysis and visualization
that integrates predictive accuracy with uncertainty esti-
mation.

The structure of this report is organized as follows: Section
2 introduces the methodologies and model implementations.
Section 3 presents experimental results and performance eval-
uations. Section 4 discusses and analyzes the findings, and
Section 5 summarizes the contributions of this assignment and
briefly outlines directions for future work.

II. METHODOLOGY

A. Linear Regression
This section outlines the methodology adopted to perform

surface reconstruction using linear regression. The approach
consists of two main steps: preprocessing the raw point cloud
data and fitting a linear model to approximate surfaces within
clusters.

1) Dataset and Preprocessing: The original dataset consists
of three-dimensional point clouds captured from a real-world
environment. To facilitate effective surface modeling, the point
clouds corresponding to building structures were isolated
using DBSCAN clustering. Each identified cluster represents
a coherent surface or plane, suitable for linear approximation.

After clustering, we employed a grid-based regularisation
technique termed bounding grid, to uniformly sample points



from the irregularly distributed cloud data. The bounding
grid method constructs an evenly spaced set of points within
the spatial bounds of each cluster, significantly improving
computational efficiency and visualization clarity.

Formally, given n original data points {xi}ni=1, where xi ∈
R3, the regularized grid points xgrid are defined by:

xgrid = bounding grid ({xi}ni=1)

This process replaces the irregular point set with a struc-
tured grid having approximately the same number of points,
providing uniform coverage and enhanced visualization of the
cluster’s geometric structure.

2) Linear Model Fitting: The primary objective of linear
regression in this context is to identify and approximate
planar surfaces within each cluster. Given that each point
is defined by three coordinates (x, y, z), we formulate three
potential regression problems, each using two coordinates as
input features and the remaining one as the target variable.
Specifically, for each cluster, we test the following linear
models:

z = β0,z + β1,zx+ β2,zy

y = β0,y + β1,yx+ β2,yz

x = β0,x + β1,xy + β2,xz

Here, β parameters are estimated using the Ordinary Least
Squares (OLS) method, which minimizes the Mean Squared
Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

The regression direction (i.e., the choice of the dependent
variable among x, y, or z) that yields the lowest MSE is
selected as the best linear approximation of the corresponding
cluster.

Subsequently, the chosen linear model is used to predict
the values on the structured grid points generated previously.
The predicted coordinates, combined with the regularized grid,
produce a linearly approximated surface representation of each
cluster.

3) Model Evaluation and Visualization: The effectiveness
of linear regression approximation is evaluated quantitatively
and qualitatively. Quantitative assessment involves computing
per-cluster MSE and the coefficient of determination R2,
defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where yi are true values, ŷi are predictions, and ȳ is the
mean of observed values. Higher R2 indicates a better fitting
performance.

Qualitative assessment is achieved through visualization.
Figures 1 and 2 depict the original clustered point cloud and
the corresponding fitted surfaces, respectively. Additionally,
Figures 3 and 4 illustrate the per-cluster evaluation metrics.

Fig. 1. Original clustered building point cloud before linear approximation.

Fig. 2. Linear regression approximated surface for each cluster using
bounding-grid regularisation.

Fig. 3. Mean Squared Error (MSE) of linear regression per cluster. Lower
MSE indicates better surface fitting.

Fig. 4. Coefficient of determination (R2) per cluster, indicating how well the
linear regression fits the data. Values closer to 1 denote better fits.

This structured approach clearly illustrates the efficiency
and limitations of linear regression for surface approxima-
tion tasks in robotics contexts, guiding us towards the more
sophisticated Gaussian Process Regression presented in the
subsequent section.



B. Gaussian Process Regression

1) Overview: Gaussian Process Regression (GPR) is a
non-parametric, probabilistic approach to regression that is
particularly effective in modeling nonlinear surfaces. Unlike
linear models, GPR assumes a distribution over functions and
produces not only the predicted mean but also a measure
of uncertainty for each prediction [4], [5]. This is especially
beneficial in robotic applications, where uncertainty estimation
plays a critical role in safe planning and decision-making [1].

The GPR model assumes that the function f(x) follows a
Gaussian Process:

f(x) ∼ GP(0, k(x,x′))

where the kernel function k(·, ·) determines the smoothness
and generalization ability of the model. In our case, we use
the squared exponential kernel:

k(x,x′) = σ2
f exp

(
−∥x− x′∥2

2ℓ2

)
where ℓ is the lengthscale and σ2

f is the signal variance.

Fig. 5. Gaussian Process estimated surface (mean predictions)

2) Prediction Formulation: Given training inputs Xd ∈
Rn×2 and targets yd ∈ Rn, the posterior predictive distribution
at query points Xq is given by:

µq = Kqd(Kdd + σ2
nI)

−1yd

Σq = Kqq −Kqd(Kdd + σ2
nI)

−1Kdq

where:

• Kdd = k(Xd,Xd)
• Kqd = k(Xq,Xd)
• Kdq = K⊤

qd, Kqq = k(Xq,Xq)
• σn is the assumed observation noise

The predictive standard deviation is obtained from:

σq =
√

diag(Σq)

Fig. 6. Predicted standard deviation (uncertainty) using GPR

3) Hyperparameter Optimization with MLE: The perfor-
mance of GPR is highly dependent on the kernel hyperpa-
rameters ℓ and σf . Rather than manually tuning them, we
use Maximum Likelihood Estimation (MLE) to learn optimal
values. This is done by minimizing the negative log marginal
likelihood:

L(ℓ, σf ) =
1

2
y⊤
d (Kdd+σ2

nI)
−1yd+

1

2
log |Kdd+σ2

nI|+
n

2
log 2π

We search over multiple initializations using L-BFGS-B
optimization to avoid local minima. This step significantly
improves the model without manual parameter selection.

4) Interactive Visualization: We also implemented an in-
teractive 3-in-1 plot for visualizing ground truth, predicted
surface, and uncertainty. This tool aids interpretation and
debugging during development.

Fig. 7. Interactive view combining ground truth, GP prediction, and uncer-
tainty

5) Quantitative Evaluation: We quantitatively evaluate the
GPR model using Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and average predictive uncertainty:

MSE =
1

n

∑
i

(ŷi−yi)
2 , RMSE =

√
MSE , σ̄ =

1

n

∑
i

σi

• MSE = 0.1053
• RMSE = 0.3245
• Mean predicted standard deviation = 0.1534



Fig. 8. Histogram of residuals showing prediction error distribution

Fig. 9. Scatter plot: predicted uncertainty vs actual prediction error

III. DISCUSSION AND CONCLUSION

This section presents a comparative discussion of the results
obtained from the linear and Gaussian process regression
(GPR) models. The analysis focuses on prediction accuracy,
generalization capacity, and the ability to estimate uncertainty.

A. Performance of Linear Regression

Linear regression was applied independently to each wall
cluster. For every cluster, we selected the best regression
direction (x, y, or z) based on the minimum Mean Squared
Error (MSE). While the model is computationally efficient and
performed well on near-planar surfaces, its simplicity limits its
expressiveness in more complex geometric settings.

Figure 1 and Figure 2 compare the raw and fitted results,
showing good alignment in flat regions. However, the evalu-
ation metrics in Figure 3 and Figure 4 indicate performance
degradation for certain clusters, especially those with curvature
or noise. This reveals the limitation of using a global linear
model in local, irregular structures.

B. Performance of Gaussian Process Regression

In contrast, GPR provides a probabilistic and flexible frame-
work for modeling continuous surfaces with spatially varying
smoothness. It not only fits the data well, but also quantifies
prediction uncertainty, which is critical in real-world robotic
scenarios.

Fig. 10. Original segmented wall point cloud

The GP results are shown in Figures 10, 5, and 6, demon-
strating accurate modeling and smooth transitions across the
terrain. Using Maximum Likelihood Estimation (MLE) for
kernel hyperparameters significantly improved the quality of
prediction while eliminating the need for manual tuning.

Figure 7 further integrates the ground truth, GP prediction,
and uncertainty into a single 3D view for intuitive analysis.

C. Quantitative Evaluation

The evaluation metrics summarize the contrast between the
two methods:

• Linear Regression: Effective on planar surfaces but
suffers on curved or noisy regions.

• GPR: Achieved MSE of 0.1053, RMSE of 0.3245, and
a mean predicted standard deviation of 0.1534.

The residual histogram in Figure 8 shows that most GPR
errors are centered near zero. Furthermore, Figure 9 confirms
a strong correlation between predicted uncertainty and actual
error, validating the reliability of uncertainty estimation.

D. Conclusion

This assignment systematically investigated two regression
models for 3D surface modeling from point cloud data.
Linear regression proved to be fast and effective for simple
structures but lacked generalization capacity. GPR, empowered
by MLE-based optimization, demonstrated superior accuracy
and uncertainty-aware modeling, making it a better choice for
applications in autonomous robotics and terrain analysis.

In summary, the results highlight the importance of com-
bining predictive accuracy and uncertainty estimation in real-
world robotics. Future work may explore online GPR, sparse
approximations for large datasets, and applications to dynamic
or partially observed environments.

IV. REFLECTION

This assignment was completed smoothly in terms of basic
implementation. Both linear regression and Gaussian Process
Regression (GPR) were successfully applied to real-world
point cloud data to reconstruct surfaces. However, I did not
stop at completing the core requirements; instead, I proactively
explored deeper model evaluation and optimization.

After initial implementation, I noticed that the Gaussian
Process model exhibited suboptimal performance. I began
manually tuning the kernel hyperparameters—namely the
lengthscale and signal variance σf—to understand their



influence on prediction accuracy and uncertainty calibration.
Through this process, I discovered a crucial trade-off between
low error and proper uncertainty estimation. For example, the
model with lengthscale = 5.0 and σf = 0.7244 yielded
the lowest MSE (0.0332), but its predicted uncertainty (mean
STD = 0.0777) was far lower than the actual RMSE (0.1822),
indicating overconfidence. In contrast, a more balanced con-
figuration with lengthscale = 3.0 and σf = 0.6792
produced slightly higher MSE (0.1053), but with a more
realistic uncertainty level (mean STD = 0.1534).

Realizing the complexity of manual tuning, I further ex-
plored and implemented a Maximum Likelihood Estimation
(MLE) framework to automate kernel parameter optimiza-
tion. This not only improved predictive performance but also
ensured that the uncertainty estimates were better aligned
with actual prediction error. The process of integrating MLE
into the GPR pipeline significantly enhanced the model’s
robustness and reduced human effort.

Overall, this reflection highlights the importance of moving
beyond standard evaluation metrics such as MSE and RMSE.
A well-calibrated model that accurately reflects its confidence
is essential in robotics and real-world decision-making. In the
future, I plan to explore post-hoc uncertainty calibration tech-
niques and alternative probabilistic models to further improve
model trustworthiness.
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