
3D Point Cloud Classification using Clustering, PCA, and SVM

Zhiye (Caesar) Zhao
University of Technology Sydney

Course: 41118 Artificial Intelligence in Robotics
Instructor: Dr. Raphael Falque

Email: zhiye.zhao-1@student.uts.edu.au

Abstract—This report presents a three-stage pipeline for clas-
sifying 3D point cloud data using unsupervised and supervised
machine learning techniques. The task involves clustering the
data using K-Means, reducing dimensionality with Principal
Component Analysis (PCA), and training a Support Vector
Machine (SVM) classifier to assign labels to unseen data. The
pipeline was implemented in Python, with careful attention
to data preprocessing and model evaluation. Throughout the
project, significant challenges were encountered in data han-
dling and classifier performance, which were resolved through
systematic debugging and methodological refinements. The
final model demonstrated excellent discrimination ability, with
a high AUC and ROC score, validating the effectiveness of the
approach.

1. Introduction

Artificial Intelligence (AI) has become a core enabler
for intelligent robotic systems, allowing them to perceive,
reason, and act autonomously in complex environments [1].
Among various AI techniques, machine learning plays a
crucial role in interpreting sensory data, particularly in un-
structured scenarios where traditional rule-based approaches
fall short. One such application is the classification of 3D
point cloud data, which has become essential for tasks
like object recognition, terrain mapping, and autonomous
navigation.

In this assignment, we explore a pipeline combining both
unsupervised and supervised learning methods to classify
point cloud data. The dataset consists of 3D coordinates,
RGB color values, and intensity features for each point.
The proposed workflow begins with K-Means clustering to
segment the data into k groups based on feature similar-
ity [2]. Subsequently, Principal Component Analysis (PCA)
is applied to each cluster to reduce dimensionality while
preserving key variance components. Finally, a Support Vec-
tor Machine (SVM) classifier is trained using the processed
features and evaluated on a test set [3].

This report details the methodology, results, and crit-
ical reflections on the challenges encountered during im-
plementation, including data processing issues, debugging
misclassifications, and interpreting evaluation metrics. The
work demonstrates not only technical application of ma-

chine learning methods but also personal learning through
problem-solving and code refinement.

2. Methodology

2.1. Data Preprocessing

Before applying machine learning algorithms, the dataset
was preprocessed to enhance stability and performance. The
key steps involved in data preprocessing are as follows:

2.1.1. Outlier Removal. Point cloud data often contains
noise due to sensor inaccuracies. To remove outliers, we
applied Statistical Outlier Removal (SOR) using Open3D.
This method removes points that deviate significantly from
their neighbors based on a statistical threshold. Given a
neighborhood of k points for a point pi, we compute the
mean distance:

di =
1

k

k∑
j=1

∥pi − pj∥ (1)

A point is considered an outlier if its distance deviates
from the mean beyond a predefined threshold:

di > µd + ασd (2)

where µd and σd are the mean and standard deviation of
distances across all points, and α is a user-defined parameter.
This step was implemented using:

pcd = pcd.remove_statistical_outlier(
nb_neighbors=10, std_ratio=1)[0]

2.1.2. Point Cloud Downsampling. Given the large number
of points in the dataset, we performed Farthest Point Sam-
pling (FPS) to reduce the number of points while preserving
the overall geometry. FPS iteratively selects the point that
is farthest from the already selected subset:

pi+1 = argmax
p∈P

min
q∈S

∥p− q∥ (3)

where S is the set of selected points, and P is the
original point cloud. The downsampling was performed
using Open3D’s built-in FPS function:

pcd = pcd.farthest_point_down_sample(10_000)

2.1.3. Train-Test Splitting. For classification, the dataset
was split into training and testing sets based on spatial
coordinates. Points with x < −5 were assigned to the test
set, while the remaining points were used for training:

test_mask = df['x'] < -5
df_test = df[test_mask]
df_train = df[˜test_mask]

This ensures that the test data represents a distinct spatial
region, enabling a more realistic evaluation of the classifier’s
generalization ability.

2.2. Clustering with K-Means

Unsupervised learning was applied using K-Means clus-
tering to segment the dataset into k groups based on feature
similarity. Given a dataset X of n points in a d-dimensional
space, the goal of K-Means is to partition the data into k
clusters, minimizing intra-cluster variance.

The clustering process is performed using Lloyd’s algo-
rithm, implemented via SciPy’s k-means function [2]. The
optimization objective is given by:

J =

k∑
i=1

∑
x∈Ci

∥x− µi∥2 (4)

where: - Ci represents the i-th cluster, - µi is the centroid
of cluster Ci.

The algorithm consists of the following steps:

1) Centroid Initialization: The initial cluster centers
µi are randomly selected.

2) Assignment Step: Each data point is assigned to
the nearest centroid:

cj = argmin
i

∥xj − µi∥ (5)

This step is performed using SciPy’s vq (vector
quantization) function.

3) Update Step: Recalculate centroids:

µi =
1

|Ci|
∑
x∈Ci

x (6)

The process repeats until centroids converge or reach a
maximum number of iterations. The clustering results are
illustrated in Fig. 1.

Figure 1. K-Means clustering result on the point cloud data. Each color
represents a different cluster.

2.3. Dimensionality Reduction using PCA

Principal Component Analysis (PCA) was applied to
each cluster to reduce dimensionality while preserving key
variance components. Unlike the standard eigenvalue de-
composition of the covariance matrix, we use Singular Value
Decomposition (SVD) for better numerical stability.

Given a dataset X of size n × d, we first compute the
mean-centered matrix:

B = X − µ (7)

where µ is the feature-wise mean vector.
Next, we perform Singular Value Decomposition (SVD):

B = USV T (8)

where:
- U is an n× d matrix of left singular vectors (not used

in PCA),
- S is a diagonal matrix containing singular values,
- V is a d × d matrix whose columns are the principal

component directions.
The principal component coefficients (loadings) are

computed as:

coeff =
√
SV T (9)

The data is then projected onto the principal component
space:

Z = BV (10)

where Z represents the transformed features in the
lower-dimensional space. The top three principal compo-
nents for a sample cluster are visualized in Fig. 2.

Figure 2. Principal Component Analysis (PCA) visualization. The three
main principal components (PC1, PC2, PC3) indicate the most significant
variance directions.

2.4. Classification using Soft Margin Support Vec-
tor Machine (SVM)

A Soft Margin Support Vector Machine (SVM) was
trained using the PCA-reduced features to classify the
clustered points. Unlike Hard Margin SVM, which strictly
separates all data points, the Soft Margin SVM allows
misclassifications through the introduction of slack variables
ξi. The optimization objective is given by:

min
c

N∑
i=1

ci −
1

2

N∑
i=1

N∑
j=1

cicjyiyjx
T
i xj (11)

subject to:

N∑
i=1

ciyi = 0, 0 ≤ ci ≤
1

2Nλ
(12)

where:
- ci are the Lagrange multipliers,
- yi ∈ {−1, 1} are the class labels,
- λ is the regularization parameter.
Once the optimal ci values are obtained, the weight

vector is computed as:

w =

N∑
i=1

ciyixi (13)

The bias term is estimated using the support vectors:

b =
1

|S|
∑
i∈S

(xT
i w − yi) (14)

where S is the set of support vectors, determined as
ci > λ. The classification performance is illustrated in Fig. 4
and Fig. 3.

Figure 3. SVM classification results on training data. The model achieved
an AUC of 1.000, indicating nearly perfect separation.

Figure 4. SVM classification results on test data. The ROC curve demon-
strates the classifier’s strong discrimination ability.

3. Reflection

This section presents a reflection on the technical and
conceptual challenges encountered during the project, and
how they were addressed through experimentation, debug-
ging, and self-driven learning.

The experimental results revealed noteworthy character-
istics of the pipeline. Although the initial SVM classifier
produced modest accuracy and F1-scores, the AUC and
ROC metrics remained consistently high, approaching 1.0
(Fig. 4). This indicated that the model had strong discrimi-
native power but lacked an optimal decision threshold. Such
a discrepancy between AUC and F1 is typical when the
model learns to separate classes well, but the classification
boundary is not aligned with the evaluation metric.

To address this, we revisited the classification stage and
focused on threshold tuning. Drawing on concepts from the

Week 3 tutorial [3], which emphasized optimizing the SVM
decision bias b, we experimented with threshold values to
maximize the F1-score on the validation set. This adjustment
significantly improved classification performance without
altering the model itself.

In addition to metric tuning, we observed that certain
clusters from the K-Means segmentation contained very few
or even single points. Initially, these ”singleton clusters”
were suspected to be noise or model instability. However,
further inspection revealed that they represented spatially
distant or isolated points in feature space. Rather than treat-
ing them as errors, we allowed such micro-clusters to persist,
as they improved classification precision without harming
overall model performance.

This project also offered deep insights into the im-
portance of maintaining data pipeline integrity. Early-stage
implementation mistakes—such as incorrect DataFrame re-
shaping and label misalignment—led to critical model fail-
ures, including a collapsed classifier that predicted a sin-
gle class. Manually debugging these issues deepened our
understanding of the interaction between feature structure,
label formatting, and the internal workings of SVM. Several
issues were resolved through targeted self-learning with
public resources such as Galarnyk’s Python tutorials [4].

Overall, this project successfully demonstrated a com-
plete 3D point cloud classification pipeline. Through clus-
tering, dimensionality reduction, and supervised learning,
the model achieved reliable class separation on previously
unseen data. Beyond the technical results, the process pro-
vided hands-on experience in real-world data preprocessing,
model tuning, and iterative debugging. In future work, more
robust clustering methods such as DBSCAN and advanced
threshold calibration strategies may be explored to enhance
model robustness in more complex or noisy environments.

Acknowledgment

The author would like to thank Dr. Raphael Falque
for his guidance throughout the course 41118 Artificial
Intelligence in Robotics, which provided both the theoretical
foundation and practical insights that contributed to the
successful completion of this project.

References

[1] R. Falque, “Introduction to ai in robotics,” 2024, lecture Slides, Week
1, 41118 Artificial Intelligence in Robotics, University of Technology
Sydney.

[2] ——, “Machine learning: Unsupervised learning,” 2024, lecture Slides,
Week 2, 41118 Artificial Intelligence in Robotics, University of Tech-
nology Sydney.

[3] ——, “Machine learning: Supervised learning,” 2024, lecture Slides,
Week 3, 41118 Artificial Intelligence in Robotics, University of Tech-
nology Sydney.

[4] M. Galarnyk, “Python tutorials,” https://github.com/mGalarnyk/
Python Tutorials, 2018, accessed: 2025-03-21.

https://github.com/mGalarnyk/Python_Tutorials
https://github.com/mGalarnyk/Python_Tutorials

	Introduction
	Methodology
	Data Preprocessing
	Outlier Removal
	Point Cloud Downsampling
	Train-Test Splitting

	Clustering with K-Means
	Dimensionality Reduction using PCA
	Classification using Soft Margin Support Vector Machine (SVM)

	Reflection
	References

