
A Deep Q-Network Agent for Navigation with
Random Obstacles in PyBullet

Zhiye (Caesar) Zhao
University of Technology Sydney

Course: 41118 Artificial Intelligence in Robotics
Instructor: Dr. Raphael Falque

Email: zhiye.zhao-1@student.uts.edu.au

Abstract—This project presents the design and evaluation of a
Deep Q-Network (DQN) agent for autonomous navigation within
a simulated PyBullet environment featuring randomly placed
obstacles. The agent aims to learn an optimal policy enabling
it to efficiently reach designated targets while avoiding collisions,
using discrete actions guided by visual inputs. During training,
key hyperparameters—including reward shaping and success
thresholds—were systematically tuned to facilitate exploration
and improve convergence. Performance was evaluated quanti-
tatively in terms of average reward, success rate, and average
steps to goal, demonstrating the agent’s effectiveness in navigat-
ing complex, randomized environments. Challenges encountered,
such as environment complexity, reward sparsity, and the impact
of ϵ-greedy exploration policies, are also discussed. This work
provides valuable insights into applying reinforcement learning in
realistic, dynamic scenarios, highlighting practical considerations
essential for integrating learning-based navigation systems into
robotic simulations.

I. INTRODUCTION

Reinforcement learning (RL) has emerged as an influen-
tial framework for developing autonomous agents capable of
sequential decision-making in complex and uncertain environ-
ments. Among its various formulations, deep reinforcement
learning (DRL) significantly advances traditional RL by em-
ploying deep neural networks to approximate value functions
or policies, enabling efficient handling of high-dimensional
and partially observable scenarios [1]. This innovation has
driven substantial progress across diverse applications, includ-
ing robotic manipulation, autonomous navigation, and strategic
gameplay.

A pivotal achievement in DRL is the Deep Q-Network
(DQN), a model-free, off-policy algorithm that integrates Q-
learning with convolutional neural networks. DQN achieved
landmark success by demonstrating human-level performance
across a range of Atari games [2]. While originally validated in
visual, discrete environments, ongoing research has extended
DQN’s capabilities to more realistic physical simulations
through advanced platforms such as PyBullet [3] and Gym [4].
These simulation tools offer sophisticated yet accessible envi-
ronments for modeling rigid-body dynamics, collision detec-
tion, and mechanical constraints, making them highly suitable
for developing and evaluating intelligent robotic systems.

This project presents a DQN-based agent designed for au-
tonomous navigation within a PyBullet environment featuring
obstacles that are randomly positioned and varied in size. The

agent operates on a two-dimensional plane, selecting from a
set of discrete actions to reach dynamically assigned target
positions while actively avoiding collisions. The implementa-
tion leverages widely adopted Python ecosystems, including
Anaconda [5], Gym interfaces [4], and PyBullet’s real-time
physics engine [3]. Educational resources and practical tutori-
als [6], [7], [8] were instrumental in guiding development and
debugging.

To optimize learning outcomes, this work systematically
explores reward shaping strategies, obstacle configuration dy-
namics, and ϵ-greedy exploration schedules. Additionally, a
novel evaluation metric termed the success threshold is intro-
duced as a performance-based criterion to rigorously define
episode success. Performance is comprehensively evaluated
using metrics such as average cumulative reward, success rate,
and steps-to-target, providing quantitative insights into the
effectiveness and efficiency of the agent’s learning strategy.

This report outlines the methodological approach, exper-
imental setup, training outcomes, and reflective analysis of
encountered challenges. It highlights critical practical con-
siderations for deploying DRL algorithms in realistic robotic
simulations and offers strategic directions for future research,
including curriculum learning and multi-agent collaboration.

II. METHODOLOGY

A. Environment Design

The environment was implemented utilizing the PyBullet
physics engine [3], providing a computationally efficient yet
physically realistic simulation for a planar driving scenario.
The simulated agent controls a differential-drive vehicle nav-
igating within a continuous two-dimensional space, with the
objective of reaching a randomly assigned goal position while
simultaneously avoiding collisions with obstacles.

Each episode commences with the vehicle positioned at
the centre of the environment. To encourage diversity in path
planning strategies and enhance policy generalization, the
target goal location is randomly sampled from one of four
distinct quadrants. Additionally, at every environment reset,
a configurable number of spherical obstacles (defaulting to
three) are instantiated at randomized positions within prede-
fined spatial bounds. Each obstacle radius is independently
sampled from a uniform distribution U(0.1, 0.4). All obstacles
are visually rendered in red and are treated as static and

impassable, increasing both the stochastic nature and the
complexity of the scenario. Such environmental complexity
emphasizes the necessity for spatial awareness and adaptive
decision-making in the agent’s policy.

The observation space provided to the agent comprises:
• The relative position of the target goal expressed within

the local coordinate frame of the agent.
• The relative positions of all obstacles, also represented

within the agent’s local coordinate system.
Consequently, the observation vector possesses a dimension-

ality of 2+2N , with N representing the number of obstacles.
This representation enables the agent to perform effective
spatial reasoning under dynamic and uncertain conditions
without requiring access to global environmental mapping
data.

Furthermore, the environment is registered as a custom Gym
environment [4], conforming to standardized reinforcement
learning interfaces. This modular design facilitates seamless
integration with training pipelines, enabling compatibility with
policy optimization algorithms, experience replay buffers, and
standardized evaluation procedures.

B. Action and Reward Formulation

The agent operates within a discrete action space consisting
of nine predefined control commands, each represented by
a tuple (v, ω), where v denotes the linear velocity and ω
denotes the angular velocity. Specifically, the velocity values
are selected from discrete sets defined as:

v ∈ {−1.0, 0.0, 1.0}, ω ∈ {−1.0, 0.0, 1.0}

This formulation yields a Cartesian product action space:

A = {(v, ω) | v ∈ {−1, 0, 1}, ω ∈ {−1, 0, 1}}

resulting in a discrete action set of cardinality |A| = 9.
This discrete structure facilitates straightforward exploration
and simplifies the learning process without necessitating fine-
grained control parameterisation.

a) Reward Design.: To effectively guide the agent to-
ward the goal while discouraging collisions, a shaped reward
function is employed. At each discrete time step t, the agent
receives a reward rt defined by the following piecewise
function:

rt =


+Rgoal, if the goal is reached,

−Rcollision, if a collision with an obstacle occurs,

∆dt, otherwise,

where ∆dt = dt−1 − dt represents the reduction in Euclidean
distance to the goal position between consecutive time steps,
calculated as:

dt = ∥pcar(t)− pgoal∥2 .

Here, Rgoal ≫ Rcollision > 0 denote tunable constants used
to strongly incentivize goal-reaching and penalize collisions.
Typical configurations adopted in this study include Rgoal =
300 and Rcollision = 500.

This structured reward formulation incentivizes the agent
to consistently reduce its distance to the goal and heavily
penalizes any collision events. The inclusion of ∆dt as an
incremental shaping reward promotes steady progress toward
the objective even when the goal has not yet been attained.

b) Episode Termination.: Each episode concludes under
one of the following three conditions:

1) The agent successfully reaches the goal position.
2) The agent collides with any obstacle present in the

environment.
3) A maximum number of steps Tmax = 200 is exceeded

without reaching the goal.
c) Success Criterion.: To rigorously evaluate the agent’s

performance, a success threshold θsucc is introduced, defined
as a scalar threshold on the cumulative episode reward. An
episode is considered successful if the total accumulated
reward R meets or exceeds this predefined threshold:

R =

T∑
t=1

rt ≥ θsucc ⇒ success.

This criterion provides a clear, quantifiable, and consistent
metric for evaluating agent performance across varying en-
vironmental configurations and diverse reward-shaping strate-
gies.

C. Q-Network Architecture and Training Procedure

To approximate the state-action value function Q(s, a),
a fully connected multilayer perceptron (MLP) architecture
was adopted, following the fundamental principles of the
original Deep Q-Network (DQN) proposed by Mnih et al. [2].
The neural network processes an input observation vector
of dimension 2 + 2N , with N representing the number of
obstacles, and outputs a vector containing the estimated Q-
values for each of the nine discrete actions.

a) Network Architecture.: The detailed architecture of
the Q-network consists of the following layers:

• Input layer: Receives an observation vector of dimension
2 + 2N , encoding the relative positions of the goal and
obstacles within the agent’s local coordinate frame.

• Hidden layers: Comprises two fully connected layers,
each containing 128 neurons and employing the rectified
linear unit (ReLU) activation function. Specifically, the
hidden-layer transformations are expressed as:

h1 = ReLU(W1x+ b1), h2 = ReLU(W2h1 + b2).

• Output layer: A linear layer producing the final Q-value
estimates for each discrete action:

Q(s, a) = W3h2 + b3, |A| = 9.

b) Loss Function.: The network is trained using the
temporal-difference loss based on the mean squared error
(MSE) criterion, computed between predicted and target Q-
values as:

L(θ) = E(s,a,r,s′)∼U(D)

[
(y −Qθ(s, a))

2
]
,

where the target value y is defined by the Bellman equation:

y = r + γmax
a′

Qθ′(s′, a′).

Here, θ denotes the parameters of the current Q-network,
θ′ denotes the parameters of the periodically updated target
network, and γ ∈ [0, 1) is the discount factor controlling the
importance of future rewards.

c) Training Strategy.: The training procedure follows a
structured reinforcement learning protocol detailed as:

• Optimizer: Adam optimizer with an initial learning rate
of 10−3.

• Training Episodes: The agent is trained over a total of
500 episodes, with each episode capped at 200 steps.

• Epsilon-Greedy Exploration: An ϵ-greedy exploration
policy is employed, where ϵ decays linearly from an
initial value of 1.0 to a final value of 0.05 over the course
of training episodes. This ensures a balance between
exploration of new actions and exploitation of the current
policy.

• Discount Factor: A discount factor γ = 0.99 is utilized,
promoting effective long-term reward optimization.

d) Stabilization Techniques.: To enhance training sta-
bility and facilitate convergence, two standard stabilization
methods are incorporated:

• An experience replay buffer is used to store and randomly
sample previously encountered transitions (s, a, r, s′) to
break correlations between sequential data samples.

• A target network, with parameters θ′, is periodically syn-
chronized with the main Q-network at regular intervals
τ . This technique mitigates oscillations and enhances the
robustness of training.

The integration of these stabilization techniques ensures
stable convergence of the Q-learning updates despite the non-
stationary and stochastic nature of reinforcement learning
environments.

D. Evaluation Protocol

Upon completion of training, the learned policy is rigorously
evaluated within a controlled simulation setting to quantify its
effectiveness in navigating toward randomly generated goals
and successfully avoiding collisions with obstacles.

a) Evaluation Environment.: The evaluation environ-
ment mirrors the dynamics and reward structure employed
during training, with the sole exception of rendering set-
tings. Specifically, evaluation episodes are initialized with
render_mode=’tp_camera’, facilitating visualization
and recording from a third-person perspective. During eval-
uation, the policy operates purely greedily, selecting actions
that maximize the estimated Q-value without any exploration
noise.

b) Performance Metrics.: To systematically quantify
agent performance, the following core metrics are computed
over a set of 10 independent evaluation episodes:

• Average Episode Reward: Defined as the mean cumula-
tive reward accrued over all evaluation episodes, reflect-
ing the overall efficiency and goal-reaching capability of
the learned policy.

• Success Rate: Calculated as the proportion of evaluation
episodes where the total cumulative reward meets or
exceeds a predefined success threshold, θsucc. This metric
provides an intuitive measure of policy robustness and
consistency.

• Average Steps to Success: For episodes classified as
successful, this metric denotes the average number of
time steps taken to reach the goal, thus reflecting the
efficiency and precision of the navigation policy.

The success threshold θsucc offers a clear, quantifi-
able benchmark distinguishing successful and unsuccessful
episodes. In this study, a baseline threshold of θsucc = 100
was adopted, chosen empirically based on reward-shaping pa-
rameters and observed agent performance during preliminary
experiments.

c) Visualization and Diagnostics.: In conjunction with
quantitative metrics, qualitative assessments are conducted
through visual inspection. A GIF animation depicting a repre-
sentative evaluation episode is recorded to illustrate the agent’s
real-time decision-making and navigational capabilities.

Additionally, diagnostic visualizations—such as the train-
ing reward progression plot and the ϵ-distribution pie
chart—provide further insights into the training process, sta-
bility, and exploration-exploitation dynamics.

All evaluation results and related diagnostics are system-
atically saved into structured directories. This organization
supports reproducible analysis and facilitates clear compar-
ative studies across different experimental setups and training
strategies.

III. RESULTS AND ANALYSIS

A. Training Performance

To assess the agent’s learning progress, the cumulative
reward per episode was tracked and visualized. Figure 1
displays the training reward trajectory across 500 episodes.
A moving average with a window size of 10 episodes was
applied to smooth out fluctuations, clearly illustrating learning
trends and convergence patterns.

Fig. 1. Training reward progression over 500 episodes. The moving average
highlights trends and convergence, mitigating stochastic fluctuations.

The reward curve exhibits a noticeable upward trajectory,
indicative of the agent’s ability to progressively optimize its
policy to achieve higher cumulative returns. Initial episodes
display significant variability, primarily due to a high explo-
ration rate (ϵ ≈ 1.0), resulting in less consistent decision-
making.

As training progresses and the exploration parameter ϵ
decays, the policy increasingly favors greedy, experience-
based action selection. Correspondingly, cumulative rewards
stabilize at higher levels, suggesting successful policy con-
vergence. Intermittent performance drops observed throughout
training can be attributed to environment stochasticity, such
as random obstacle placements and diverse goal positions,
introducing inherently variable task difficulties. Nevertheless,
the overall upward trend demonstrates robust learning and
effective generalization capabilities.

B. Evaluation Performance

Post-training, policy effectiveness was rigorously evaluated
over ten independent episodes conducted under deterministic
conditions (ϵ = 0). The evaluation environment mirrored the
training setup, ensuring consistency in dynamics and stochastic
factors.

Table I summarizes each evaluation episode’s total cumu-
lative reward (R), steps taken, and success status. Episodes
were classified as successful if total rewards surpassed the
empirically chosen success threshold θsucc = 100.

TABLE I
EVALUATION RESULTS OVER 10 INDEPENDENT EPISODES

Episode Total Reward (R) Steps Taken Success
0 −247.53 41 ✗
1 −241.45 41 ✗
2 162.26 21 ✓
3 168.48 21 ✓
4 184.77 19 ✓
5 −204.27 41 ✗
6 −233.32 41 ✗
7 −180.48 41 ✗
8 204.77 18 ✓
9 184.47 19 ✓

Based on the threshold θsucc = 100, the agent achieved
a success rate of 50%, an average cumulative reward of
−38.23 across all episodes, and an average step count of
19.6 in successful scenarios. Although these results confirm
the agent’s capability to consistently achieve the goal under
favorable conditions, further optimization may be beneficial
for improved robustness in more challenging circumstances.

C. Exploration Behavior

Efficient exploration is pivotal in reinforcement learning,
particularly within environments presenting sparse or delayed
rewards. An ϵ-greedy exploration strategy was employed, with
a linear decay of ϵ from 1.0 to 0.05 across episodes, progres-
sively shifting the balance from exploration to exploitation.

Fig. 2. Distribution of selected actions under ϵ-greedy policy at training
conclusion.

Figure 2 illustrates the final distribution of discrete actions
(v, ω) ∈ {−1, 0, 1}2 selected at the end of training. The
visualization indicates a convergence toward certain action
preferences, notably moderate forward motion combined with
controlled steering adjustments.

This emergent behavioral pattern suggests the policy effec-
tively balances goal-directed progression with cautious obsta-
cle avoidance. The gradually reduced exploratory randomness
facilitated refinement of the policy through accumulated ex-
perience. Future investigations could explore adaptive explo-
ration schemes to potentially enhance sample efficiency and
improve policy generalization further.

D. Qualitative Behavior

Complementing quantitative assessments, qualitative evalu-
ation was conducted via visualization of representative episode
behavior. Selected frames from a representative evaluation
episode (Figure 3) illustrate real-time agent navigation using
deterministic action selection.

Fig. 3. Selected frames illustrating agent behavior during a representative
evaluation episode, demonstrating successful obstacle avoidance and goal
achievement.

As depicted, the agent consistently demonstrates effective
spatial reasoning and collision avoidance behavior, adapting
its trajectory smoothly when confronted with obstacles. This

qualitative evidence suggests successful internalization of im-
plicit spatial awareness, achieved without explicit global path-
planning inputs.

The agent’s stable and purposeful actions under determinis-
tic execution further underscore policy reliability. Collectively,
these observations highlight the practicality and effectiveness
of the learned DQN policy within stochastic and partially
observable robotic simulation environments, supporting its
applicability to real-world navigation tasks.

IV. CHALLENGES AND INSIGHTS

Throughout the development and training of the DQN-based
navigation agent, several technical challenges emerged, each
offering valuable insights into the nuances of applying deep re-
inforcement learning within dynamic simulated environments.

A. Reward Shaping and Scaling

One of the central challenges encountered involved design-
ing a reward function that effectively balanced goal-seeking
behaviour and collision avoidance. Initial experiments em-
ploying sparse reward structures led to prolonged convergence
periods and frequent convergence to undesirable local optima,
wherein agents would remain stationary to avoid penalties.
To address this, a carefully shaped reward function was devel-
oped, incentivizing incremental progress toward the goal while
imposing significant penalties for collisions. However, fine-
tuning the reward scale, particularly the ratio between Rgoal
and Rcollision, presented considerable complexity. Excessively
large goal rewards tended to induce premature convergence
towards suboptimal policies, whereas insufficiently severe
collision penalties failed to effectively discourage reckless
actions, highlighting the delicate nature of reward engineering.

B. Success Threshold Definition

The introduction of a success threshold θsucc as an evalua-
tion metric initially posed challenges due to sensitivity to arbi-
trary threshold selections. Early threshold choices yielded mis-
leading success statistics, especially at initial training stages.
Through empirical experimentation, a success threshold of
θsucc = 100 was identified as optimal, aligning effectively with
observed reward magnitudes obtained by successful policies.
Despite this empirical success, the metric remains inherently
sensitive to underlying reward scales, suggesting potential
refinements such as percentile-based or adaptive curriculum-
driven methods for future investigations.

C. Exploration–Exploitation Trade-off

Effectively managing the exploration–exploitation trade-off
via an ϵ-greedy strategy required meticulous calibration. An
overly rapid decay in exploration probability (ϵ) resulted in
premature exploitation of suboptimal behaviours, while exces-
sively slow decay unnecessarily prolonged convergence time.
As illustrated in Figure ??, the final action distribution in-
dicated a reasonable balance between random exploratory ac-
tions and policy-guided selections. Nevertheless, opportunities
remain for further optimization through adaptive exploration

methods or entropy-based scheduling strategies, enhancing
both sample efficiency and policy performance.

D. Environmental Complexity and Generalization

The stochastic nature of obstacle positions and dimensions
substantially increased environmental complexity, compelling
the agent to generalize effectively across diverse spatial con-
figurations. This complexity occasionally triggered overfitting
behaviours, such as repetitive circling or conservative spatial
avoidance. To mitigate these tendencies, the agent’s robust-
ness and generalization abilities were systematically assessed
across multiple random seeds and evaluation scenarios. Future
work might consider incorporating curriculum learning strate-
gies or domain randomization techniques to further strengthen
policy adaptability and generalization.

E. Debugging and Evaluation Instrumentation

Developing a stable and Gym-compatible custom environ-
ment within the PyBullet physics engine introduced substan-
tial engineering challenges, notably regarding state encoding,
dynamic obstacle generation, and rendering integration. Em-
ploying comprehensive visualization tools—such as training
reward curves, evaluation metrics tables, and animated policy
demonstrations—proved essential for debugging, performance
diagnostics, and interpreting agent behaviours. These diagnos-
tic frameworks facilitated environment validation, identified
and mitigated simulation artifacts, and significantly enhanced
experimental reproducibility.

Collectively, these encountered challenges emphasize the
critical importance of meticulous reward function design,
carefully selected performance evaluation criteria, and robust
debugging and visualization infrastructure. Addressing these
considerations is indispensable for successfully applying deep
reinforcement learning to realistic and complex simulation
tasks inspired by real-world scenarios.

V. REFLECTION

This project provided a valuable opportunity to consolidate
theoretical knowledge and practical skills across reinforcement
learning (RL), simulation engineering, and deep neural net-
work development. Implementing a Deep Q-Network (DQN)
agent in a dynamic PyBullet environment unveiled numerous
practical challenges extending beyond standard textbook RL
formulations.

A. Deepened Understanding of Reward Dynamics

A pivotal insight from this project involved recognizing
the subtle yet critical relationship between reward magnitude
and resultant agent behaviour. Iterative experimentation under-
scored that reward shaping significantly influences not only
the convergence speed but also the quality and stability of the
learned policy. Developing the concept of a success threshold
helped mitigate ambiguities during evaluation, highlighting the
necessity of aligning reward design closely with meaningful
and interpretable performance metrics.

B. Iterative Nature of Hyperparameter Tuning

Engagement with hyperparameter tuning reinforced the it-
erative and context-sensitive nature inherent in RL experi-
ments. Key hyperparameters—including learning rate, ϵ decay
schedules, and reward-related constants—required extensive
empirical adjustments and validation through repeated test-
ing cycles. This iterative refinement substantially enhanced
problem-solving abilities and diagnostic proficiency, particu-
larly facilitated by visualization tools such as training reward
curves and performance evaluation plots.

C. Navigating from Failure to Policy Convergence

Initial training episodes frequently resulted in unsuccessful
outcomes, characterized by the agent exhibiting erratic move-
ments, such as repetitive spinning or unintended collisions.
These early failures reflected deficiencies in reward feed-
back mechanisms or inadequate initial exploration. Through
methodical incorporation of shaped reward terms and cali-
brated adjustments to the ϵ-greedy exploration strategy, the
agent transitioned gradually from exploratory randomness to
coherent, goal-oriented navigation behaviours. This evolution
highlighted the significance of patience and structured exper-
imentation in achieving effective RL solutions.

D. Technical Growth in Simulation and Evaluation Engineer-
ing

On the technical implementation side, constructing a cus-
tom Gym-compatible environment within PyBullet necessi-
tated mastering several intricate processes, including envi-
ronment registration, robust state encoding strategies, and
visual debugging techniques. Integrating dynamic obstacles
with randomized positions and sizes enhanced realism but
also required careful attention to observation representation
to ensure training stability.

Moreover, managing evaluation protocols, developing infor-
mative plots, and generating qualitative visualizations via an-
imated episode recordings significantly honed technical com-
munication skills. These tasks also emphasized best practices
for ensuring experimental reproducibility and reliability.

E. Connection with Prior Robotic Control Experiences

This project effectively extends previous experiences in
robotics, specifically multi-robot navigation systems developed
in ROS1 and leader–follower formation control implemented
via model predictive control (MPC). Compared to these earlier
rule-based methods, the RL-driven navigation policy devel-
oped here demonstrated enhanced adaptability and autonomy
in uncertain, dynamic scenarios. This comparison underscores
the complementary and powerful role that reinforcement learn-
ing can play alongside traditional robotic control methodolo-
gies.

Overall, this project served as an integrative experience,
bridging theoretical understanding with practical execution. It
clearly illustrated reinforcement learning’s potential for robotic
control tasks while providing authentic contexts for rigorous

debugging, comprehensive evaluation, and reflective growth as
a robotics engineer and researcher.

VI. CONCLUSION

This project demonstrated the successful implementation of
Deep Q-Networks (DQN) for autonomous navigation within
a simulated PyBullet environment characterized by randomly
positioned and variably sized obstacles. By utilizing a discrete
action space and carefully designed reward-shaping strategies,
the developed agent effectively learned to navigate towards
dynamically assigned goals while consistently avoiding colli-
sions, even amidst stochastic and unpredictable environmental
conditions.

The employed training and evaluation framework encom-
passed both quantitative performance metrics—such as aver-
age cumulative rewards, success rates, and average steps-to-
goal—and qualitative analyses facilitated by visual demonstra-
tions and GIF animations. These multi-dimensional evaluation
approaches offered comprehensive insights into the robustness
and effectiveness of the learned policy. Additionally, the
introduction of a clearly defined success threshold enhanced
the clarity and interpretability of performance assessment,
bridging the gap between cumulative rewards and task-oriented
success criteria.

Throughout the project, iterative hyperparameter tuning,
reward-shaping experimentation, and environmental complex-
ity adjustments played critical roles. These iterative refine-
ments not only enhanced policy convergence and stability but
also provided deeper insights into core reinforcement learning
concepts, such as exploration–exploitation trade-offs, temporal
difference (TD) learning, and effective policy generalization in
randomized scenarios.

The outcomes and insights from this project lay a robust
foundation for future advancements in related fields. Promising
directions include:

• Transitioning from discrete to continuous action spaces
and employing more sophisticated function approxima-
tors, such as actor–critic architectures.

• Extending the navigation paradigm to multi-agent cooper-
ative settings, facilitating coordinated vehicle interactions
under shared environmental constraints.

• Combining reinforcement learning with traditional
model-based control strategies, particularly model pre-
dictive control (MPC), to enhance policy safety, inter-
pretability, and precision.

• Moving beyond simulation environments toward physical
robotic implementations, leveraging sim-to-real transfer
learning techniques to bridge the reality gap effectively.

Furthermore, this project effectively leveraged prior expe-
riences gained from rule-based multi-robot formation control
using MPC within the ROS1 framework. In contrast, this RL-
driven approach underscores reinforcement learning’s unique
capability to produce adaptable, robust policies without re-
liance on explicit trajectory planning. Synthesizing traditional
control methodologies with data-driven reinforcement learn-
ing approaches emerges as a promising paradigm, offering

enhanced precision and adaptability in real-world robotic
deployments.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT press, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[3] E. Coumans and Y. Bai, “Pybullet physics sdk,” https://pypi.org/project/
pybullet/, 2024, accessed: 2025-04-01.

[4] OpenAI, “Gym: A toolkit for developing and comparing reinforcement
learning algorithms,” https://pypi.org/project/gym/, 2024, accessed: 2025-
04-01.

[5] Anaconda Inc., “Anaconda official documentation,” https://www.
anaconda.com/docs/main, 2024, accessed: 2025-04-01.

[6] M. Galarnyk, “Python tutorials for data science and machine learning,”
https://github.com/mGalarnyk/Python Tutorials, 2018, accessed: 2025-
04-01.

[7] P. Wen, “Deep reinforcement learning practice with tensorflow,” https:
//github.com/princewen/tensorflow practice, 2018, accessed: 2025-04-01.

[8] OpenAI, “Spinning up in deep rl,” https://spinningup.openai.com/, 2018,
accessed: 2025-04-01.

APPENDIX

This appendix presents visual references to key implemen-
tation components of the project. Each figure highlights an
important module from the Deep Q-Network (DQN) pipeline,
including the agent architecture, training loop, environment
dynamics, and evaluation logic.

The complete project source code is available on GitHub:
https://github.com/caesar1457/RL_simple_car

Fig. 4. Implementation of QNetwork architecture, ϵ-greedy action selection,
Q-learning training loop, and training reward plotting.

https://pypi.org/project/pybullet/
https://pypi.org/project/pybullet/
https://pypi.org/project/gym/
https://www.anaconda.com/docs/main
https://www.anaconda.com/docs/main
https://github.com/mGalarnyk/Python_Tutorials
https://github.com/princewen/tensorflow_practice
https://github.com/princewen/tensorflow_practice
https://spinningup.openai.com/
https://github.com/caesar1457/RL_simple_car

Fig. 5. Evaluator class used for computing average reward, success rate, and
average steps-to-goal over multiple evaluation episodes.

Fig. 6. Function for computing extended observations, including goal and
obstacle positions relative to the car.

Fig. 7. Gym environment class declaration with render modes and dynamic
obstacle count configuration.

Fig. 8. Main execution script for training and evaluation, including model
saving/loading, and visual result generation.

Fig. 9. Utility functions for generating reward curves, evaluation metrics,
action distribution plots, and GIFs.

Fig. 10. Environment reset function with randomized goal and obstacle
initialization.

Fig. 11. Environment step function: applies discrete actions, simulates forward
dynamics, computes rewards, and checks for termination.

Fig. 12. Terminal output showing reward history and evaluation summary for
10 independent test episodes.

	Introduction
	Methodology
	Environment Design
	Action and Reward Formulation
	Q-Network Architecture and Training Procedure
	Evaluation Protocol

	Results and Analysis
	Training Performance
	Evaluation Performance
	Exploration Behavior
	Qualitative Behavior

	Challenges and Insights
	Reward Shaping and Scaling
	Success Threshold Definition
	Exploration–Exploitation Trade-off
	Environmental Complexity and Generalization
	Debugging and Evaluation Instrumentation

	Reflection
	Deepened Understanding of Reward Dynamics
	Iterative Nature of Hyperparameter Tuning
	Navigating from Failure to Policy Convergence
	Technical Growth in Simulation and Evaluation Engineering
	Connection with Prior Robotic Control Experiences

	Conclusion
	References

